sábado, 14 de febrero de 2009

PRUEBA DE APRENDIZAJE AUTONOMO
C T T
FORMADOR OSCAR ACOSTA


Gustav Kirchhoff
Leyes de Kirchhoff
Ejemplos


Gustav Kirchhoff


Gustav Robert Kirchhoff (12 de marzo de 1824- 17 de octubre de 1887) fue un físico prusiamo cuyas principales contribuciones científicas estuvieron en el campo de los circuitos electricos, la teoria de placas, la optica, la espectroscopia y la emisión de radiacion de cuerpo negro. Kirchhoff propuso el nombre de radiación de cuerpo negro en 1862. Es responsable de dos conjuntos de leyes fundamentales en la teoría clásica de circuitos eléctricos y en la emisión térmica. Aunque ambas se denominan leyes de kirchhoff, probablemente esta denominación es más común en el caso de las Leyes de Kirchhoff de la Ingenieria Electrica.


Estudió en la universidad de esa ciudad. Fue profesor de física en las universidades de Breslau, Heidelberg y Berlín. Con el químico alemán Robert Wilhelm Bunsen, desarrolló el espectroscopio moderno para el análisis químico. En 1860 los dos científicos descubrieron el cesio y el rubidio mediante la espectroscopia. Kirchhoff dirigió importantes investigaciones sobre la transferencia de calor y también expuso dos reglas, actualmente conocidas como leyes de Kirchhoff, con respecto a la distribución de corriente en circuitos eléctricos.


Biografia

Gustav Kirchhoff nació en Königsberg, Prusia (actualmente Kaliningrado, Rusia). Era hijo de Friedrich Kirchhoff (abogado) y Johanna Henriette. Se graduó en la Universidad Albertus de Königsberg en 1847 y se casó con Clara Richelot, hija de Friedrich Richelot, uno de sus profesores de matemáticas. Aquel mismo año se trasladaron a Berlín donde permaneció hasta que le otorgaron una plaza de catedrático en Breslau (ahora Wroclaw) donde trabajó entre 1850 y 1854 para trasladarse posteriormente a la Universidad de Heidelberg y años más tarde a la Universidad de Berlín. En 1886 el empeoramiento de su salud le obligó a retirarse, falleciendo un año más tarde.
Kirchhoff formuló su ley del voltaje para el análisis de circuitos en
1845 siendo todavía un estudiante. Propuso su ley de emisión de radiación térmica en 1859 proporcionando pruebas de ella en 1861. En Breslau colaboró en trabajos sobre espectroscopía con Bunsen siendo co-descubridor junto a Bunsen de los elementos cesio y rudibio en 1861 estudiando la composición química del sol a través de su espectro. Fue licenciado en antropología y trabajo de campo en 1856







2. Para todo conjunto de conductores que forman un circuito cerrado, se verifica que la suma de las caídas de tensión en las resistencias que constituyen la malla, es igual a la suma de las f.e.ms. intercaladas. Considerando un aumento de potencial como positivo (+) y una caída de potencial como negativo (-), la suma algebraica de las diferencias de potenciales (tensiones, voltajes) en una malla cerrada es cero:


(suma algebraica de E) Σ E - Σ I*R = 0 (suma algebraica de las caídas I*R, en la malla cerrada)

como consecuencia de esto en la práctica para aplicar esta ley, supondremos una dirección arbitraria para la corriente en cada rama. Así, en principio, el extremo de la resistencia, por donde penetra la corriente, es positivo con respecto al otro extremo. Si la solución para la corriente que se resuelva, hace que queden invertidas las polaridades, es porque la supuesta dirección de la corriente en esa rama, es la opuesta.
Por ejemplo:







Las flechas representan la dirección del flujo de la corriente en el nudo. I1 entra a la unión, considerando que I2 e I3 salen. Si I1 fuera 20 A e I3 fuera 5 A, I2 tendría 15 A, según la ley de voltaje de I1=I2 + I3. La ley de Kirchoff para los voltajes es, la suma de voltajes alrededor de un circuito cerrado es igual a cero. Esto también puede expresarse como la suma de voltajes de un circuito cerrado es igual a la suma de voltajes de las fuentes de tensión:






En la figura anterior, la suma de las caídas de voltaje en R1, R2 y R3 deben ser igual a 10V o sea, 10V =V1+ V2+ V3. Aquí un ejemplo:




Las corrientes de I2 e I3 y la resistencia desconocida R3 centran todos los cálculos, usando la teoría básica de la corriente continua. La dirección del flujo de la corriente está indicado por las flechas.

El voltaje en el lado izquierdo (la resistencia R1 de 10 Ω), está saliendo del terminal superior de la resistencia.

La d. d. p. en esta resistencia R1 es de I1 * R o sea, 5 voltios. Esto está en oposición de los 15 voltios de la batería.
Por la ley de kirchoff del voltaje, la d. d. p. por la resistencia R2 de 10 Ω es así 15-5 o sea, 10 voltios.

Usando la ley Ohm, la corriente a través de la resistencia R2 10 Ω es entonces (V/R) 1 amperio.

Usando la ley de Kirchoff de la corriente y ahora conociendo el I1 e I3, el I2 se encuentra como I3=I1+I2 por consiguiente el amperaje de I2= 0.5A.

De nuevo, usando la ley de Kirchoff del voltaje, la d. d. p. para R3 puede calcularse como, 20 = I2*R3 +10. El voltaje por R3 (el I2*R3) es entonces 10 voltios. El valor de R3 es (V/I) o 10/0.5 o 20Ω.

1 comentario: